02 Pages : 9-27
http://dx.doi.org/10.31703/giidr.2017(II-I).02 10.31703/giidr.2017(II-I).02 Published : Dec 2017Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis
Anti-microbial treatment is extensively used in conventional tuberculosis treatment, leading to resistance development. In this review, we summarized the mode of action and susceptibility protocols of anti-Tubercular drugs. An effort to elucidate the role of genetic variations, cell membrane adaptions, and efflux pump modalities in treatment failure will be an asset in devising prospective strategies.
-
Tuberculosis, Drug resistance, Mechanism of Action, Mutations
-
(1) Shabana Gulzar Toor
Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
(2) Mohammad Faizan Asif
Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
(3) Hafsa Abbas
Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
(4) Gul Shehnaz
Chairperson, Department of Pharmacy, Faculty of Biological Sciences, Quaid I Azam University, Islamabad, Pakistan.
- Valim, A. R. Rossetti,M. L. Ribeiro, M. O. & Zaha, A. (2000).
- Zaczek, A. Brzostek, E. Augustynowicz-Kopec, Z. Zwolska, & Dziadek, J. (2009).
- Abraham, A. O., Nasiru, A. U., AbdulAzeez, A. K., Seun, O. O., & Ogonna, D. W. (2020). Mechanism of Drug Resistance in Mycobacterium Tuberculosis. American Journal of Biomedical Science & Research, 7(5), 378-383.
- Ahmad, N., Ahuja, S. D., Akkerman, O. W., Alffenaar, J. C., Anderson, L. F., Baghaei, P., et al. (2018). Treatment correlates of successful outcomes in pulmonary multidrug- resistant Tuberculosis: an individual patient data meta-analysis. Lancet 392, 821-834. doi: 10.1016/S0140- 6736(18)31644-1.
- Ai, J. W., Ruan, Q. L., Liu, Q. H., & Zhang, W. H. (2016). Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerging microbes & infections, 5(1), 1-8.
- Akbergenov, R., Shcherbakov, D., Matt, T., Duscha, S., Meyer, M., Wilson, D. N., & Böttger, E. C. (2011). Molecular basis for the selectivity of antituberculosis compounds capreomycin and viomycin. Anti-microbial agents and chemotherapy, 55(10), 4712- 4717.
- Alcalá, L., Ruiz-Serrano, M. J., Pérez-Fernández Turégano, C., GarcÃÂa De Viedma, D., DÃÂaz- Infantes, M., MarÃÂn-Arriaza, M., & Bouza, E. (2003). In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs. Antimicrobial agents and chemotherapy, 47(1), 416-417. https://doi.org/10.1128/aac.47.1.416- 417.2003
- Almeida Da Silva, P. E., & Palomino, J. C. (2011). Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis:classical and new drugs. The Journal of anti-microbial chemotherapy, 66(7), 1417- 1430. https://doi.org/10.1093/jac/dkr173
- Almeida, D., Ioerger, T., Tyagi, S., Li, S. Y., Mdluli, K., Andries, K., et al. (2016). Mutations in pepQ Confer Low-level resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 60, 4590-4599. doi: 10.1128/AAC.00753-16.
- Alsaad, N., Wilffert, B., van Altena, R., de Lange, W. C., van der Werf, T. S., Kosterink, J. G., & Alffenaar, J. W. C. (2014). Potential anti- microbial agents for the treatment of multidrug-resistant Tuberculosis. European Respiratory Journal, 43(3), 884-897.
- Amaral, L. E. O. N. A. R. D., & Lorian, V. I. C. T. O. R. (1991). Effects of chlorpromazine on the cell envelope proteins of Escherichia coli. Anti-microbial agents and chemotherapy, 35(9), 1923-1924.
- Amaral, L., & Molnar, J. (2012). Potential therapy of multidrug-resistant and extremely drug- resistant Tuberculosis with thioridazine. in vivo, 26(2), 231-236.
- Amaral, L., & Viveiros, M. (2012). Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. International journal of anti-microbial agents, 39(5), 376-380.
- Amaral, L., Kristiansen, J. E., Abebe, L. S., & Millett, W. (1996). Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed Tuberculosis. Journal of Antimicrobial Chemotherapy, 38(6), 1049-1053.
- Amaral, L., Kristiansen, J. E., Viveiros, M., & Atouguia, J. (2001). Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. Journal of Antimicrobial Chemotherapy, 47(5), 505-511.
- Amaral, L., Viveiros, M., & Kristiansen, J. E. (2001). Phenothiazines: potential alternatives for the management of antibiotic resistant infections of Tuberculosis and malaria in developing countries. Tropical Medicine & International Health, 6(12), 1016-1022.
- Amaral, l., viveiros, m., & molnar, j. (2004). Anti- microbial activity of phenothiazines. In vivo, 18(6), 725-732.
- Ando, H., Miyoshi-Akiyama, T., Watanabe, S., & Kirikae, T. (2014). A silent mutation in mabA confers isoniazid resistance on M ycobacterium tuberculosis. Molecular microbiology, 91(3), 538-547.
- Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W., Neefs, J. M., Winkler, H., et al. (2005). A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223-227. doi: 10.1126/science.1106753.
- Andries, K., Villellas, C., Coeck, N., Thys, K., Gevers, T., Vranckx, L., et al. (2014). Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 9: e102135. doi: 10.1371/journal.pone.0102135.
- Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W., Neefs, J. M., Winkler, H., & Williams, P. (2005). A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 307(5707), 223- 227.
- Andriole, V. T. (2005). The quinolones: past, present, and future. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 41 Suppl 2, S113-S119. https://doi.org/10.1086/428051
- Ang, C. W., Jarrad, A. M., Cooper, M. A., & Blaskovich, M. A. (2017). Nitroimidazoles: molecular fireworks that combat a broad spectrum of infectious diseases. Journal of Medicinal Chemistry, 60(18), 7636-7657.
- Arbiser, J. L., & Moschella, S. L. (1995). Clofazimine: a review of its medical uses and mechanisms of action. Journal of the American Academy of Dermatology, 32(2), 241-247
- Arora, S. K. (1981). Structural investigations of mode of action of drugs. III. Structure of rifamycin S iminomethyl ether. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 37(1), 152-157.
- Aubry, A., Veziris, N., Cambau, E., Truffot-Pernot, C., Jarlier, V., & Fisher, L. M. (2006). Novel gyrase mutations in quinolone-resistant and-hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Anti-microbial Agents and Chemotherapy, 50(1), 104-112.
- Aubry, A., Pan, X. S., Fisher, L. M., Jarlier, V., & Cambau, E. (2004). Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with anti- mycobacterial drug activity. Anti-microbial agents and chemotherapy, 48(4), 1281-1288. https://doi.org/10.1128/aac.48.4.1281- 1288.2004
- Abraham, A. O. (2020). Mechanism of Drug Resistance in Mycobacterium Tuberculosis. - 7(5), AJBSR.MS.ID.001181. DOI:10.34297/AJBS R.2020.07.001181
- Kim, B. J., Kim, S. Y., Park, B. H. et al., (1997).
- Bakuła, Z., Napiórkowska, A., Bielecki, J., Augustynowicz-Kopeć, E., Zwolska, Z., & Jagielski, T. (2013). Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates from Poland. BioMed research international, 2013.
- Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K. S., Wilson, T., ... & Jacobs, W. R. (1994). inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 263(5144), 227- 230.
- Baulard, A. R., J. C. Betts, J. Engohang-Ndong, S. Quan, R. A. McAdam, P. J. Brennan, C. Locht, and G. S. Besra. (2000). Activation of the prodrug ethionamide is regulated in mycobacteria. J. Biol. Chem.275:28326- 28331.
- Bernard, C., Veziris, N., Brossier, F., Sougakoff, W., Jarlier, V., Robert, J., & Aubry, A. (2015). Molecular diagnosis of fluoroquinolone resistance in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 59(3), 1519-1524.
- Cuevas-Córdoba, B., Cuellar-Sánchez, A., Pasissi- Crivelli, A., Santana-ÃÂlvarez, C. A., Hernández-Illezcas, J., Zenteno-Cuevas, R., & rpsL. (2013), mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico, Journal of Microbiology, Immunology and Infection,Volume 46, Issue 1, Pages 30- 34,ISSN 1684-1182, https://doi.org/10.1016/j.jmii.2012.08.020.
- Bloch, K. (1977). Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv. Enzymol. Relat. Areas Mol. Biol.45:1-84
- Bloemberg, G. V., Keller, P. M., Stucki, D., Trauner, A., Borrell, S., Latshang, T., Coscolla, M., Rothe, T., Hömke, R., Ritter, C., Feldmann, J., Schulthess, B., Gagneux, S., & Böttger, E. C. (2015). Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis. The New England journal of medicine, 373(20), 1986-1988. https://doi.org/10.1056/NEJMc1505196
- Boeree, M. J., Heinrich, N., Aarnoutse, R., Diacon, A. H., Dawson, R., Rehal, S., & Minja, L. T. (2017). High-dose rifampicin, moxifloxacin, and SQ109 for treating Tuberculosis: a multi-arm, multi-stage randomized controlled trial. The Lancet infectious diseases, 17(1), 39-49.
- Bollela, V. R., Namburete, E. I., Feliciano, C. S., Macheque, D., Harrison, L. H., & Caminero, J. A. (2016). Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant Tuberculosis. The international journal of Tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 20(8), 1099-1104. https://doi.org/10.5588/ijtld.15.0864
- Boni, I. V., Artamonova, V. S., & Dreyfus, M. (2000). The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control. Journal of bacteriology, 182(20), 5872-5879. https://doi.org/10.1128/jb.182.20.5872- 5879.2000
- British Medical Association. (2010). Pharmaceutical Society of Great Britain: British National Formulary 59.
- Brossier, F., Pham, A., Bernard, C., Aubry, A., Jarlier, V., Veziris, N., & Sougakoff, W. (2017). Molecular investigation of resistance to second-line injectable drugs in multidrug- resistant clinical isolates of Mycobacterium tuberculosis in France. Anti-microbial agents and chemotherapy, 61(2).
- Brossier, F., Veziris, N., Truffot-Pernot, C., Jarlier, V., & Sougakoff, W. (2011). Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Anti- microbial agents and chemotherapy, 55(1), 355-360.
- Brown, A. K. A., Bhatt, A., Singh, E., Saparia, A. F. E., & Besra. G. S., (2007). Identification of the dehydratase component of the mycobacterial mycolic acid-synthesizing fatty acid synthase-II complex. Microbiology153:4166-4173.
- Campbell, J. W., & J. E. Cronan, J. (2001). Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol.55:305-332.
- Campbell, P. J., Morlock, G. P., Sikes, R. D., Dalton, T. L., Metchock, B., Starks, A. M., ... & Posey, J. E. (2011). Molecular detection of mutations associated with first-and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Anti- microbial agents and chemotherapy, 55(5), 2032-2041.
- Cars, O., Högberg, L. D., Murray, M., Nordberg, O., Sivaraman, S., Lundborg, C. S., ... & Tomson, G. (2008). Meeting the challenge of antibiotic resistance. Bmj, 337, a1438.
- Caws, M., Duy, P. M., Tho, D. Q., Lan, N. T. N., & Farrar, J. (2006). Mutations prevalent among rifampin-and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. Journal of clinical microbiology, 44(7), 2333-2337.
- Cellitti, S. E., Shaffer, J., Jones, D. H., Mukherjee, T., Gurumurthy, M., Bursulaya, B., ... & Cherian, J. (2012). Structure of Ddn, the deazaflavin-dependent nitroreductase rom Mycobacterium tuberculosis involved in bioreductive activation of PA- 824. Structure, 20(1), 101-112.
- Centers for Disease Control and Prevention. (2006). Revised definition of extensively drug- resistant Tuberculosis. MMWR Morb Mortal Wkly Rep, 55(1176), 1.
- Che, Y., Song, Q., Yang, T., Ping, G., & Yu, M. (2017). Fluoroquinolone resistance in multidrug- resistant Mycobacterium tuberculosis independent of fluoroquinolone use. The European respiratory journal, 50(6), 1701633. https://doi.org/10.1183/13993003.01633- 2017
- Cheng, A. F., Yew, W. W., Chan, E. W., Chin, M. L., Hui, M. M., & Chan, R. C. (2004). Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Anti-microbial agents and chemotherapy, 48(2), 596— 601. https://doi.org/10.1128/aac.48.2.596- 601.2004
- Cheng, S. J., Thibert, L., Sanchez, T., Heifets, L., & Zhang, Y. (2000). pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Anti-microbial agents and chemotherapy, 44(3), 528-532. https://doi.org/10.1128/aac.44.3.528- 532.2000
- Crofton, j., & mitchison, d. A. (1948). Streptomycin resistance in pulmonary Tuberculosis. British medical journal, 2(4588), 1009-1015. https://doi.org/10.1136/bmj.2.4588.1009
- Cynamon, M. H., Klemens, S. P., Sharpe, C. A., & Chase, S. (1999). Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Anti- microbial agents and chemotherapy, 43(5), 1189-1191. https://doi.org/10.1128/AAC.43.5.1189
- De Knegt, G. J., van der Meijden, A., de Vogel, C. P., Aarnoutse, R. E., & de Steenwinkel, J. E. (2017). Activity of moxifloxacin and linezolid against Mycobacterium tuberculosis in combination with potentiator drugs verapamil, timcodar, colistin and SQ109. International journal of anti-microbial agents, 49(3), 302-307.
- Deng, L., Mikusová, K., Robuck, K. G., Scherman, M., Brennan, P. J., & McNeil, M. R. (1995). Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Anti-microbial agents and chemotherapy, 39(3), 694-701. https://doi.org/10.1128/aac.39.3.694
- Dookie, N., Rambaran, S., Padayatchi, N., Mahomed, S., & Naidoo, K. (2018). Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. The Journal of anti- microbial chemotherapy, 73(5), 1138-1151. https://doi.org/10.1093/jac/dkx506
- Dutta, Noton & Karakousis, Petros. (2017). Mechanisms of Action and Resistance of the Anti-mycobacterial Agents. 10.1007/978-3-319-46718-4_25.
- E. Cambau, V. Jarlier,Resistance to quinolones in mycobacteria, Research in Microbiology,Volume 147, Issues 1- 2,1996, Pages 52-59, ISSN 0923-2508, https://doi.org/10.1016/0923- 2508(96)80204-X. http://www.sciencedirect.com/science/ar ticle/pii/092325089680204X
- Escribano, I., RodrÃÂguez, J. C., Llorca, B., GarcÃÂa- Pachon, E., Ruiz, M., & Royo, G. (2007). Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy, 53(6), 397-401. https://doi.org/10.1159/000109769
- Ferber D. Biochemistry. Protein that mimics DNA helps tuberculosis bacteria resist antibiotics. Science. 2005 Jun 3;308(5727):1393. doi: 10.1126/science.308.5727.1393a. PMID: 15933168.
- Finken, M., Kirschner, P., Meier, A., Wrede, A., & Böttger, E. C. (1993). Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Molecular microbiology, 9(6), 1239-1246. https://doi.org/10.1111/j.1365- 2958.1993.tb01253.x
- Fulco, A. J., and K. Bloch. 1964. Cofactor requirements for the formation of delta-9- unsaturated fatty acids in Mycobacterium phlei. J. Biol. Chem.239:993-997.
- Gandhi, N. R., Nunn, P., Dheda, K., Schaaf, H. S., Zignol, M., Van Soolingen, D., ... & Bayona, J. (2010). Multidrug-resistant and extensively drug-resistant Tuberculosis: a threat to global control of Tuberculosis. The Lancet, 375(9728), 1830-1843. Gandhi, N. R., Nunn, P., Dheda, K., Schaaf, H. S., Zignol, M., Van Soolingen, D., ... & Bayona, J. (2010). Multidrug-resistant and extensively drug- resistant Tuberculosis: a threat to global control of Tuberculos
- Georghiou, S. B., Magana, M., Garfein, R. S., Catanzaro, D. G., Catanzaro, A., & Rodwell, T. C. (2012). Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PloS one, 7(3), e33275.
- Ghajavand, H., Kargarpour Kamakoli, M., Khanipour, S., Pourazar Dizaji, S., Masoumi, M., Rahimi Jamnani, F., et al. (2019). High prevalence of bedaquiline resistance in treatment- naive tuberculosis patients and verapamil effectiveness. Antimicrob. Agents Chemother. 63: e02530-18. doi: 10.1128/AAC.02530-18
- Ginsburg, A. S., Grosset, J. H., & Bishai, W. R. (2003). Fluoroquinolones, Tuberculosis, and resistance. The Lancet. Infectious diseases, 3(7), 432-442. https://doi.org/10.1016/s1473- 3099(03)00671-6
- Goude, R., Amin, A. G., Chatterjee, D., & Parish, T. (2009). The arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 53(10), 4138-4146.
- Gurumurthy, M., Rao, M., Mukherjee, T., Rao, S. P., Boshoff, H. I., Dick, T., ... & Manjunatha, U. H. (2013). A novel F420-dependent anti- oxidant mechanism protects M ycobacterium tuberculosis against oxidative stress and bactericidal agents. Molecular microbiology, 87(4), 744-755.
- Hartkoorn, R. C., Uplekar, S., and Cole, S. T. (2014). Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58, 2979-2981. doi: 10.1128/AAC.00037-14
- Haver, H. L., Chua, A., Ghode, P., Lakshminarayana, S. B., Singhal, A., Mathema, B., ... & Bifani, P. (2015). Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro- selected PA-824-resistant mutants of Mycobacterium tuberculosis. Anti- microbial agents and chemotherapy, 59(9), 5316-5323.
- Hazbón, M. H., Brimacombe, M., Bobadilla del Valle, M., Cavatore, M., Guerrero, M. I., Varma- Basil, M., Billman-Jacobe, H., Lavender, C., Fyfe, J., GarcÃÂa-GarcÃÂa, L., León, C. I., Bose, M., Chaves, F., Murray, M., Eisenach, K. D., Sifuentes-Osornio, J., Cave, M. D., Ponce de León, A., & Alland, D. (2006). Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrobial agents and chemot https://doi.org/10.1128/AAC.00112-06
- Hegde, S. S., Vetting, M. W., Roderick, S. L., Mitchenall, L. A., Maxwell, A., Takiff, H. E., & Blanchard, J. S. (2005). A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science, 308(5727), 1480-1483.
- Hillemann, D., Rüsch-Gerdes, S., & Richter, E. (2008). In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Anti-microbial agents and chemotherapy, 52(2), 800-801. https://doi.org/10.1128/AAC.01189-07
- Hotta K, Kondo S. Kanamycin and its derivative, arbekacin: significance and impact. J Antibiot (Tokyo). 2018 Mar;71(4):417- 424. doi: 10.1038/s41429-017-0017-8. Epub 2018 Feb 5. PMID: 29402999.
- Howard P, Twycross R, Grove G, Charlesworth S, Mihalyo M, Wilcock A. Rifampin (INN Rifampicin). J Pain Symptom Manage. 2015 Dec;50(6):891-5.
- Huitric, E., Verhasselt, P., Koul, A., Andries, K., Hoffner, S., and Andersson, D. I. (2010). Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob. Agents Chemother. 54, 1022-1028. doi: 10.1128/AAC.01611-09
- oerger, T. R., Feng, Y., Chen, X., Dobos, K. M., Victor, T. C., Streicher, E. M., ... & Sacchettini, J. C. (2010). The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC genomics, 11(1), 670.
- smail, N. A., Omar, S. V., Joseph, L., Govender, N., Blows, L., Ismail, F., et al. (2018). Defining Bedaquiline susceptibility, resistance, cross-resistance and associated genetic determinants: a retrospective cohort study. Ebiomedicine 28, 136-142. doi: 10.1016/j.ebiom.2018.01.005
- Isolates. Antimicrob Agents Chemother, 2015
- wainsky, H. (1988) Mode of action, biotransformation and pharmacokinetics of ant tuberculosis drugs in animals and man. In Antituberculosis Drugs. K. Bartmann (ed.). Berlin: Springer-Verlag, pp. 457- 465.
- Jadaun, G. P. S., Das, R., Upadhyay, P., Chauhan, D. S., Sharma, V. D., & Katoch, V. M. (2009). Role of embCAB gene mutations in ethambutol resistance in Mycobacterium tuberculosis isolates from India. International journal of anti-microbial agents, 33(5), 483-486.
- Jagielski, T., Bakuła, Z., Roeske, K., Kamiński, M., Napiórkowska, A., Augustynowicz-Kopeć, E., ... & Bielecki, J. (2014). Detection of mutations associated with isoniazid resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates. Journal of Antimicrobial Chemotherapy, 69(9), 2369-2375.
- Jarlier, V., & Nikaido, H. (1994). Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS microbiology letters, 123(1-2), 11-18. https://doi.org/10.1111/j.1574- 6968.1994.tb07194.x
- Jeong, I., Park, J. S., Cho, Y. J., Yoon, H. I., Song, J., Lee, C. T., & Lee, J. H. (2015). Drug- induced hepatotoxicity of anti-tuberculosis drugs and their serum levels. Journal of Korean medical science, 30(2), 167-172. https://doi.org/10.3346/jkms.2015.30.2.1 67
- Jing, W., Zhang, T., Zong, Z., Xue, Y., Shang, Y., Wang, F., ... & Pang, Y. (2019). Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug- resistant Tuberculosis. European Journal of Clinical Microbiology & Infectious Diseases, 38(7), 1293-1296.
- Johansen, S. K., Maus, C. E., Plikaytis, B. B., & Douthwaite, S. (2006). Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Molecular cell, 23(2), 173-182.
- Johnsson, K., Froland, W. A., & Schultz, P. G. (1997). Overexpression, purification, and characterization of the catalase-peroxidase KatG from Mycobacterium tuberculosis. Journal of Biological Chemistry, 272(5), 2834-2840.
- Jugheli, L., Bzekalava, N., de Rijk, P., Fissette, K., Portaels, F., & Rigouts, L. (2009). High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Anti- microbial agents and chemotherapy, 53(12), 5064-5068.
- Kadura, S., King, N., Nakhoul, M., Zhu, H., Theron, G., Köser, C. U., & Farhat, M. (2020). Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. Journal of Antimicrobial Chemotherapy.
- Kandler, J. L., Mercante, A. D., Dalton, T. L., Ezewudo, M. N., Cowan, L. S., Burns, S. P., Metchock, B., Global PETTS Investigators, Cegielski, P., & Posey, J. E. (2018). Validation of Novel Mycobacterium tuberculosis Isoniazid Resistance Mutations Not Detectable by Common Molecular Tests. Anti-microbial agents and chemotherapy, 62(10), e00974-18. https://doi.org/10.1128/AAC.00974-18
- Kaniga, K., Cirillo, D. M., Hoffner, S., Ismail, N. A., Kaur, D., Lounis, N., et al. (2016). A multilaboratory, multicounty study to determine bedaquiline MIC quality control ranges for phenotypic drug susceptibility testing. J. Clin. Microbiol. 54, 2956-2962. doi: 10.1128/JCM.01123-16
- Kashiwabara, Y., H. Nakagawa, G. Matsuki, and R. Sato. 1975. Effect of metal ions in the culture medium on the stearoyl-coenzyme A desaturase activity of Mycobacterium phlei. J. Biochem. (Tokyo)78:803-810
- Kocagöz, T., Hackbarth, C. J., Unsal, I., Rosenberg, E. Y., Nikaido, H., & Chambers, H. F. (1996). Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Anti- microbial agents and chemotherapy, 40(8), 1768-1774. https://doi.org/10.1128/AAC.40.8.1768
- Konno, K., Feldmann, F. M., & McDermott, W. (1967). Pyrazinamide susceptibility and amidase activity of tubercle bacilli. The American review of respiratory disease, 95(3), 461-469. https://doi.org/10.1164/arrd.1967.95.3.46 1
- Kremer, L., A. R. Baulard, and G. S. Besra. 2000. Genetics of mycolic acid biosynthesis, p.173-190. In G. F. Hatfull and W. R. Jacobs, Jr. (ed.), Molecular genetics of mycobacteria. ASM Press, Washington, DC.
- Kristiansen, J. E. (1993). Chlorpromazine: non- antibiotics with anti-microbial activity' new insights in managing resistance. Curr. Opin. Investig. Drugs, 2, 587-591
- Kristiansen, J. E., & Amaral, L. (1997). The potential management of resistant infections with non-antibiotics. The Journal of anti- microbial chemotherapy, 40(3), 319-327
- Lacoma, A., Garcia-Sierra, N., Prat, C., Maldonado, J., Ruiz-Manzano, J., Haba, L., ... & Dominguez, J. (2012). GenoType MTBDRsl for molecular detection of second-line- drug and ethambutol resistance in Mycobacterium tuberculosis strains and clinical samples. Journal of clinical microbiology, 50(1), 30-36.
- Lamprecht, D. A., Finin, P. M., Rahman, M. A., Cumming, B. M., Russell, S. L., Jonnala, S. R., ... & Steyn, A. J. (2016). Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nature communications, 7(1), 1-14
- Larsen, M. H., Vilchèze, C., Kremer, L., Besra, G. S., Parsons, L., Salfinger, M., Heifets, L., Hazbon, M. H., Alland, D., Sacchettini, J. C., & Jacobs, W. R., Jr (2002). Overexpression of inhA, but not kasA, confers resistance to soniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Molecular microbiology, 46(2), 453-466. https://doi.org/10.1046/j.1365- 2958.2002.03162.x
- Lee, B. M., Harold, L. K., Almeida, D. V., Afriat-Jurnou, L., Aung, H. L., Forde, B. M., ... & Taylor, M. C. (2020). Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS pathogens, 16(2), e1008287.
- Lee, N., & Nguyen, H. (2020). Ethambutol. StatPearls [Internet].
- Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M., & Barry, C. E. (2003). Combinatorial lead optimization of [1, 2]- diamines based on ethambutol as potential antituberculosis preclinical candidates. Journal of combinatorial chemistry, 5(2), 172-187.
- Lehmann, J. (1946) para-Aminosalicylic acid in the treatment of Tuberculosis. Lancet i: 15- 16
- Lempens, P., Meehan, C. J., Vandelannoote, K., Fissette, K., de Rijk, P., Van Deun, A., ... & de Jong, B. C. (2018). Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Scientific reports, 8(1), 1-9.
- Lentz, F., Reiling, N., Martins, A., Molnár, J., & Hilgeroth, A. (2018). Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis. Molecules (Basel, Switzerland), 23(4), 825. https://doi.org/10.3390/molecules23040 825
- Lety, M. A., Nair, S., Berche, P., & Escuyer, V. (1997). A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis. Anti- microbial agents and chemotherapy, 41(12), 2629-2633.
- Leung, E. T. Y., Ho, P. L., Yuen, K. Y., Woo, W. L., Lam, T. H., Kao, R. Y., ... & Yam, W. C. (2006). Molecular characterization of isoniazid resistance in Mycobacterium tuberculosis: identification of a novel mutation in inhA. Anti-microbial agents and chemotherapy, 50(3), 1075-1078.
- Liu, Y., Gao, J., Du, J., Shu, W., Wang, L., Wang, Y., ... & Pang, Y. (2020). Acquisition of clofazimine resistance following bedaquiline treatment for multidrug- resistant Tuberculosis. International Journal of Infectious Diseases, 102, 392- 396.
- Makarov, V., Lechartier, B., Zhang, M., Neres, J., van der Sar, A. M., Raadsen, S. A., ... & Widmer, N. (2014). Towards a new combination therapy for Tuberculosis with next generation benzothiazinones. EMBO molecular medicine, 6(3), 372-383.
- Martinez, J. L., Fajardo, A., Garmendia, L., Hernandez, A., Linares, J. F., MartÃÂnez-Solano, L., & Sánchez, M. B. (2008). A global view of antibiotic resistance. FEMS microbiology reviews, 33(1), 44-65.
- Maruri, F., Sterling, T. R., Kaiga, A. W., Blackman, A., van der Heijden, Y. F., Mayer, C., Cambau, E., & Aubry, A. (2012). A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. The Journal of anti- microbial chemotherapy, 67(4), 819-831. https://doi.org/10.1093/jac/dkr566
- Massie, S. P. (1954). The Chemistry of Phenothiazine. Chemical Reviews, 54(5), 797-833.
- Matrat, S., Veziris, N., Mayer, C., Jarlier, V., Truffot- Pernot, C., Camuset, J., Bouvet, E., Cambau, E., & Aubry, A. (2006). Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Anti-microbial agents and chemotherapy, 50(12), 4170-4173. https://doi.org/10.1128/AAC.00944-06
- Matsumoto, M., Hashizume, H., Tomishige, T., Kawasaki, M., Tsubouchi, H., Sasaki, H., ... & Komatsu, M. (2006). OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against Tuberculosis in vitro and in mice. PLoS Med, 3(11), e466.
- Maus, C. E., Plikaytis, B. B., & Shinnick, T. M. (2005). Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 49(8), 3192-3197.
- Meng, Q., Luo, H., Liu, Y., Li, W., Zhang, W., & Yao, Q. (2009). Synthesis and evaluation of carbamate prodrugs of SQ109 as antituberculosis agents. Bioorganic & medicinal chemistry letters, 19(10), 2808- 2810.
- Mitchison D. A. (1985). The action of antituberculosis drugs in short-course chemotherapy. Tubercle, 66(3), 219-225. https://doi.org/10.1016/0041- 3879(85)90040-6
- Moazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389- 394. https://doi.org/10.1038/327389a0
- Mohamed, A. E., Condic-Jurkic, K., Ahmed, F. H., Yuan, P., O'Mara, M. L., Jackson, C. J., & Coote, M. L. (2016). Hydrophobic shielding drives catalysis of hydride transfer in a family of F420H2-dependent enzymes. Biochemistry, 55(49), 6908- 6918.
- Molnar, J., Beladi, I., & Földes, I. (1977). Studies on antituberculotic action of some phenothiazine derivatives in vitro. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie, 239(4), 521-526.
- Morens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and re- emerging infectious diseases. Nature, 430(6996), 242-249.
- Morlock, G. P., Metchock, B., Sikes, D., Crawford, J. T., & Cooksey, R. C. (2003). ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Anti-microbial agents and chemotherapy, 47(12), 3799-3805.
- Mukherjee, T., & Boshoff, H. (2011). Nitroimidazoles for the treatment of TB: past, present and future. Future medicinal chemistry, 3(11), 1427-1454.
- Neu, H. C. (1994). Antimicrobial Chemotherapy, 1934-1994. Antimicrobics and Infectious Diseases Newsletter, 13(1), 1-8.
- Njire M Tan Y, Mugweru J, Wang C, Guo J, Yew W, et al. (2016) Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Adv Med Sci 61(1): 63-71.
- Nuermberger, E., Tyagi, S., Tasneen, R., Williams, K. N., Almeida, D., Rosenthal, I., & Grosset, J. H. (2008). Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of Tuberculosis. Anti- microbial agents and chemotherapy, 52(4), 1522-1524. https://doi.org/10.1128/AAC.00074-08
- Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., Suzuki, Y., & Ochi, K. (2007). Loss of a conserved 7- methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Molecular microbiology, 63(4), 1096-1106. https://doi.org/10.1111/j.1365- 2958.2006.05585.x
- Onajole, O. K., Govender, P., van Helden, P. D., Kruger, H. G., Maguire, G. E., Wiid, I., & Govender, T. (2010). Synthesis and evaluation of SQ109 analogues as potential anti-tuberculosis candidates. European journal of medicinal chemistry, 45(5), 2075-2079.
- Ordway, D., Viveiros, M., Leandro, C., Bettencourt, R., Almeida, J., Martins, M., ... & Amaral, L. (2003). Clinical concentrations of thioridazine kill intracellular multidrug- resistant Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 47(3), 917-922.
- Organization, W. H. Global tuberculosis report 2018. (World Health Organization, 2018).
- Palomino, J. C., & Martin, A. (2014). Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel, Switzerland), 3(3), 317-340. https://doi.org/10.3390/antibiotics30303 17
- Pandey, B., Grover, S., Kaur, J., & Grover, A. (2019). Analysis of mutations leading to para- aminosalicylic acid resistance in Mycobacterium tuberculosis. Scientific reports, 9(1), 1-15.
- Pym, A. S., Saint-Joanis, B., & Cole, S. T. (2002). Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infection and immunity, 70(9), 4955-4960. https://doi.org/10.1128/iai.70.9.4955- 4960.2002
- Quenard, F., Fournier, P. E., Drancourt, M., & Brouqui, P. (2017). Role of second-line injectable antituberculosis drugs in the treatment of MDR/XDR tuberculosis. International Journal of Antimicrobial Agents, 50(2), 252-254
- Raghunandanan, S., Jose, L., & Kumar, R. A. (2018). Dormant Mycobacterium tuberculosis converts isoniazid to the active drug in a Wayne's model of dormancy. The Journal of antibiotics, 71(11), 939'949.
- Ramaswamy, S. V., Amin, A. G., Göksel, S., Stager, C. E., Dou, S. J., El Sahly, H., ... & Musser, J. M. (2000). Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates ofMycobacterium Tuberculosis. Anti- microbial agents and chemotherapy, 44(2), 326-336.
- Rawat, R., Whitty, A., & Tonge, P. J. (2003). The isoniazid-NAD adduct is a slow, tight- binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13881-13886. https://doi.org/10.1073/pnas.223584810 0
- Reeves, A. Z., Campbell, P. J., Sultana, R., Malik, S., Murray, M., Plikaytis, B. B., Shinnick, T. M., & Posey, J. E. (2013). Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5' untranslated region of whiB7. Anti- microbial agents and chemotherapy, 57(4), 1857-1865. https://doi.org/10.1128/AAC.02191-12
- Rivière, E., Whitfield, M. G., Nelen, J., Heupink, T. H., & Van Rie, A. (2020). Identifying isoniazid resistance markers to guide inclusion of high-dose isoniazid in tuberculosis treatment regimens: a systematic review. Clinical Microbiology and Infection.
- Ruusala, T., & Kurland, C. G. (1984). Streptomycin preferentially perturbs ribosomal proofreading. Molecular and General Genetics MGG, 198(1), 100-104.
- Foongladda, S., Roengsanthia, D., Arjrattanakool, W., Chuchottaworn, C., Chaiprasert, A., & Franzblau, S. G. (2002). Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Disease, 6(12), 1118-1122.
- Safi, H., Lingaraju, S., Amin, A., Kim, S., Jones, M., Holmes, M., McNeil, M., Peterson, S. N., Chatterjee, D., Fleischmann, R., & Alland, D. (2013). Evolution of high-level ethambutol-resistant Tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nature genetics, 45(10), 1190-1197. https://doi.org/10.1038/ng.2743
- Samuelson, J. (1999). Why metronidazole is active against both bacteria and parasites. Anti- microbial agents and chemotherapy, 43(7), 1533-1541.
- Scorpio, A., & Zhang, Y. (1996). Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nature medicine, 2(6), 662-667. https://doi.org/10.1038/nm0696-662
- Scorpio, A., Lindholm-Levy, P., Heifets, L., Gilman, R., Siddiqi, S., Cynamon, M., & Zhang, Y. (1997). Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 41(3), 540-543. https://doi.org/10.1128/AAC.41.3.540
- Sebastian M. Gygli, Sonia Borrell, Andrej Trauner, Sebastien Gagneux, Anti-microbial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives, FEMS Microbiology Reviews, Volume 41, Issue 3, May 2017, Pages 354- 373, https://doi.org/10.1093/femsre/fux01 1
- Seifert, M., Catanzaro, D., Catanzaro, A., & Rodwell, T. C. (2015). Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PloS one, 10(3), e0119628. https://doi.org/10.1371/journal.pone.0119 628
- Sherman, D. R., Mdluli, K., Hickey, M. J., Arain, T. M., Morris, S. L., Barry, C. E., & Stover, C. K (1996). Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science, 272(5268), 1641- 1643.
- Shi, W., Zhang, X., Jiang, X., Yuan, H., Lee, J. S., Barry, C. E., 3rd, Wang, H., Zhang, W., & Zhang, Y. (2011). Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science (New York, N.Y.), 333(6049), 1630-1632. https://doi.org/10.1126/science.1208813
- Silva, M. S. N., Senna, S. G., Ribeiro, M. O., Valim, A. R., Telles, M. A., Kritski, A., ... & Rossetti, M. L. R. (2003). Mutations in katG, inhA, and ahpC genes of Brazilian isoniazid- resistant isolates of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 41(9), 4471-4474.
- Singh, R., Manjunatha, U., Boshoff, H. I., Ha, Y. H., Niyomrattanakit, P., Ledwidge, R., ... & Kang, S. (2008). PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science, 322(5906), 1392-1395.
- Smith, T., Wolff, K. A., & Nguyen, L. (2013). Molecular biology of drug resistance in Mycobacterium tuberculosis. Current topics in microbiology and immunology, 374, 53-80. https://doi.org/10.1007/82_2012_279
- Sotgiu, G., Centis, R., D'ambrosio, L., & Migliori, G. B. (2015). Tuberculosis treatment and drug regimens. Cold Spring Harbor perspectives in medicine, 5(5), a017822.
- Spies, F. S., da Silva, P. E., Ribeiro, M. O., Rossetti, M. L., & Zaha, A. (2008). Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Anti- microbial agents and chemotherapy, 52(8), 2947-2949. https://doi.org/10.1128/AAC.01570-07
- Sreevatsan, S., Stockbauer, K. E., Pan, X. I., Kreiswirth, B. N., Moghazeh, S. L., Jacobs, W. R., ... & Musser, J. M. (1997). Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Anti-microbial agents and chemotherapy, 41(8), 1677-1681
- Stanley, R. E., Blaha, G., Grodzicki, R. L., Strickler, M. D., & Steitz, T. A. (2010). The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nature structural & molecular biology, 17(3), 289.
- Starks, A. M., Gumusboga, A., Plikaytis, B. B., Shinnick, T. M., & Posey, J. E. (2009). Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 53(3), 1061-1066.
- Sun, G., Luo, T., Yang, C., Dong, X., Li, J., Zhu, Y., ... & Mei, J. (2012). Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. The Journal of infectious diseases, 206(11), 1724-1733.
- Sun, Z., Zhang, J., Zhang, X., Wang, S., Zhang, Y., & Li, C. (2008). Comparison of gyrA gene mutations between laboratory-selected ofloxacin-resistant Mycobacterium tuberculosis strains and clinical isolates. International journal of anti- microbial agents, 31(2), 115-121. https://doi.org/10.1016/j.ijantimicag.2007. 10.014
- Takayama, K., & Kilburn, J. O. (1989). Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Anti-microbial agents and chemotherapy, 33(9), 1493-1499. https://doi.org/10.1128/aac.33.9.1493
- Takiff, H. E., Cimino, M., Musso, M. C., Weisbrod, T., Martinez, R., Delgado, M. B., ... & Jacobs, W. R. (1996). Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proceedings of the National Academy of Sciences, 93(1), 362-366.
- Takiff, H. E., Salazar, L., Guerrero, C., Philipp, W., Huang, W. M., Kreiswirth, B., Cole, S. T., Jacobs, W. R., Jr, & Telenti, A. (1994). Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Anti-microbial agents and chemotherapy, 38(4), 773- 780. https://doi.org/10.1128/aac.38.4.773
- Te Brake, L. H., Russel, F. G., van den Heuvel, J. J., de Knegt, G. J., de Steenwinkel, J. E., Burger, D. M., ... & Koenderink, J. B. (2016). Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis, 96, 150-157.
- Telenti, A., Imboden, P., Marchesi, F., Matter, L., Schopfer, K., Bodmer, T., ... & Cole, S. (1993). Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. The Lancet, 341(8846), 647- 651.
- Telenti, A., Philipp, W. J., Sreevatsan, S., Bernasconi, C., Stockbauer, K. E., Wieles, B., ... & Jacobs, W. R. (1997). The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nature medicine, 3(5), 567- 570.
- Tetali, S. R., Kunapaeddi, E., Mailavaram, R. P., Singh, V., Borah, P., Deb, P. K., ... & Tekade, R. K. (2020). Current advances in the clinical development of anti-tubercular agents. Tuberculosis, 125, 101989.
- Thomas, J. P., Baughn, C. O., Wilkinson, R. G., & Shepherd, R. G. (1961). A new synthetic compound with antituberculous activity in mice: Ethambutol (dextro-2, 2′- (ethylenediimino)-di-1-butanol). American Review of Respiratory Disease, 83(6), 891- 893.
- Tseng, S. T., Tai, C. H., Li, C. R., Lin, C. F., & Shi, Z. Y. (2015). The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. Journal of Microbiology, Immunology and Infection, 48(3), 249- 255.
- Tsukamura, M. (1969). Cross-resistance relationships between capreomycin, kanamycin, and viomycin resistances in tubercle bacilli from patients. American Review of Respiratory Disease, 99(5), 780- 782.
- Tuberculosis. John S. Blanchard, Annual Review of Biochemistry, 2003.
- Umumararungu, T., Mukazayire, M. J., Mpenda, M., Mukanyangezi, M. F., Nkuranga, J. B., Mukiza, J., & Olawode, E. O. (2020). A review of recent advances in anti-tubercular drug development. Indian Journal of Tuberculosis.
- Vale, N., Gomes, P., & A Santos, H. (2013). Metabolism of the antituberculosis drug ethionamide. Current drug metabolism, 14(1), 151-158.
- Van Doorn, H. R., de Haas, P. E., Kremer, K., Vandenbroucke-Grauls, C. M., Borgdorff, M. W., & van Soolingen, D. (2006). Public health impact of isoniazid-resistant Mycobacterium tuberculosis strains with a mutation at aminoacid position 315 of katG: a decade of experience in The Netherlands. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 12(8), 769-775. https://doi.org/10.1111/j.1469- 0691.2006.01495.x
- Van Dorp, L., Nimmo, C., Ortiz, A. T., Pang, J., Acman, M., Tan, C. C., ... & Pym, A. (2020). Detection of a bedaquiline/clofazimine resistance reservoir in Mycobacterium tuberculosis predating the antibiotic era. bioRxiv.
- Verma, J. S., Gupta, Y., Nair, D., Manzoor, N., Rautela, R. S., Rai, A., & Katoch, V. M. (2014). Evaluation of gidB alterations responsible for streptomycin resistance in Mycobacterium tuberculosis. The Journal of anti-microbial chemotherapy, 69(11), 2935-2941. https://doi.org/10.1093/jac/dku273
- Vilcheze, C., Weisbrod, T. R., Chen, B., Kremer, L., Hazbón, M. H., Wang, F., ... & Jacobs, W. R. (2005). Altered NADH/NAD ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Anti- microbial agents and chemotherapy, 49(2), 708-720.
- Vilchèze, C., & Jacobs, W. R., Jr (2007). The Mechanism of isoniazid killing: clarity through the scope of genetics. Annual review of microbiology, 61, 35-50. https://doi.org/10.1146/annurev.micro.61.1 11606.122346
- Vilchèze, C., Wang, F., Arai, M., Hazbón, M. H., Colangeli, R., Kremer, L., ... & Jacobs, W. R. (2006). Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nature medicine, 12(9), 1027-1029.
- Vilchèze, C., H. R. Morbidoni, T. R. Weisbrod, H. Iwamoto, M. Kuo, J. C. Sacchettini, and W. R. Jacobs, Jr. 2000. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol.182:4059-4067.
- Villellas, C., Coeck, N., Meehan, C. J., Lounis, N., de Jong, B., Rigouts, L., et al. (2017). Unexpected high prevalence of resistance- associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J. Antimicrob. Chemother. 72, 684-690. doi: 10.1093/jac/dkw502
- Viveiros, M., & Amaral, L. (2001). Enhancement of antibiotic activity against poly-drug resistant Mycobacterium tuberculosis by phenothiazines. International journal of anti-microbial agents, 17(3), 225-228
- Wang, F., Jain, P., Gulten, G., Liu, Z., Feng, Y., Ganesula, K., ... & Jacobs, W. R. (2010). Mycobacterium tuberculosis dihydrofolate reductase is not a target relevant to the anti-tubercular activity of isoniazid. Anti- microbial agents and chemotherapy, 54(9), 3776-3782.
- Willand, N. et al. Synthetic EthR inhibitors boost ant tuberculous activity of ethionamide. Nat Med 15, 537-544 (2009).
- Winder, FG (1982) Mode of action of the anti- mycobacterial agents and associated aspects of the molecular biology of mycobacteria. In The Biology of Mycobacteria - Vol I. Ratledge, C, and Stanford. J. (eds). London; Academic
- Wolucka, B. A., McNeil, M. R., de Hoffmann, E., Chojnacki, T., & Brennan, P. J. (1994). Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. The Journal of biological chemistry, 269(37), 23328-23335.
- World Health Organization [WHO] (2019a). Global Tuberculosis Report.
- World Health Organization. (2009). WHO report 2009-global tuberculosis control epidemiology, strategy, financing. World Health Organization.
- Wright, A., & Zignol, M. (2008). Anti-tuberculosis drug resistance in the world: fourth global report: the world health organization/international union against Tuberculosis and lung disease (who/union) global project on anti-tuberculosis drug resistance surveillance, 2002-2007. World Health Organization.
- Xu, J., Tozawa, Y., Lai, C., Hayashi, H., & Ochi, K. (2002). A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3 (2). Molecular Genetics and Genomics, 268(2), 179-189.
- Xu, J., Wang, B., Hu, M., Huo, F., Guo, S., Jing, W., ... & Lu, Y. (2017). Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant Tuberculosis. Anti-microbial agents and chemotherapy, 61(6).
- Yamada, T. A. K. E. S. H. I., Nagata, A. K. I. H. I. S. A., Ono, Y. A. S. U. K. O., Suzuki, Y. A. S. U. H. I. K. O., & Yamanouchi, T. (1985). Alteration of ribosomes and RNA polymerase in drug-resistant clinical isolates of Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 27(6), 921-924.
- Ye, C., Williams, B.G., Espinal, M.A., and Raviglione, M.C. (2002) Erasing the world's slow stain: strategies to beat multidrug-resistant Tuberculosis. Science 295: 2042 - 2046.
- Yew, W. W., Liang, D., Chan, D. P., Shi, W., & Zhang, Y. (2017). Molecular mechanisms of clofazimine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 72(10), 2943-2944.
- Yu, J., Wu, J., Francis, K. P., Purchio, T. F., & Kadurugamuwa, J. L. (2005). Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. Journal of Antimicrobial Chemotherapy, 55(4), 528- 534.
- Zaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M., & Posey, J. E. (2009). Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences, 106(47), 20004-20009.
- Zhang Y. (2005). The magic bullets and tuberculosis drug targets. Annual review of pharmacology and toxicology, 45, 529-564. https://doi.org/10.1146/annurev.pharmtox. 45.120403.100120
- Zhang, S., Chen, J., Cui, P., Shi, W., Zhang, W., & Zhang, Y. (2015). Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 70(9), 2507-2510.
- Zhang, Y., & Yew, W. W. (2009). Mechanisms of drug resistance in Mycobacterium tuberculosis. The international journal of Tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 13(11), 1320-1330.
- Zhang, Y., Heym, B., Allen, B., Young, D., & Cole, S. (1992). The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 358(6387), 591- 593. https://doi.org/10.1038/358591a0
- Zhang, Y., Wade, M. M., Scorpio, A., Zhang, H., & Sun, Z. (2003). Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. The Journal of anti-microbial chemotherapy, 52(5), 790-795. https://doi.org/10.1093/jac/dkg446
- Zhu, C., Liu, Y., Hu, L., Yang, M., & He, Z. G. (2018). Molecular Mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. Journal of Biological Chemistry, 293(43), 16741- 16750.
- Zimhony, O., Cox, J. S., Welch, J. T., Vilchèze, C., & Jacobs, W. R., Jr (2000). Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature medicine, 6(9), 1043 - 1047. https://doi.org/10.1038/79558
- imhony, O., Vilchèze, C., Arai, M., Welch, J. T., & Jacobs, W. R., Jr (2007). Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Anti-microbial agents and chemotherapy, 51(2), 752-754. https://doi.org/10.1128/AAC.01369-06
- Zumla, A., George, A., Sharma, V., Herbert, R. H. N., Oxley, A., & Oliver, M. (2015). The WHO 2014 global tuberculosis report-further to go. The Lancet Global Health, 3(1), e10- e12.
Cite this article
-
APA : Toor, S. G., Asif, M. F., & Abbas, H. (2017). Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis. Global Immunological & Infectious Diseases Review, II(I), 9-27. https://doi.org/10.31703/giidr.2017(II-I).02
-
CHICAGO : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. 2017. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review, II (I): 9-27 doi: 10.31703/giidr.2017(II-I).02
-
HARVARD : TOOR, S. G., ASIF, M. F. & ABBAS, H. 2017. Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis. Global Immunological & Infectious Diseases Review, II, 9-27.
-
MHRA : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. 2017. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review, II: 9-27
-
MLA : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review, II.I (2017): 9-27 Print.
-
OXFORD : Toor, Shabana Gulzar, Asif, Mohammad Faizan, and Abbas, Hafsa (2017), "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis", Global Immunological & Infectious Diseases Review, II (I), 9-27
-
TURABIAN : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review II, no. I (2017): 9-27. https://doi.org/10.31703/giidr.2017(II-I).02