ARTICLE

DECLINED DRUG SUSCEPTIBILITY MECHANISMS AGAINST MYCOBACTERIUM TUBERCULOSIS

02 Pages : 9-27

http://dx.doi.org/10.31703/giidr.2017(II-I).02      10.31703/giidr.2017(II-I).02      Published : Dec 2017

Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis

    Anti-microbial treatment is extensively used in conventional tuberculosis treatment, leading to resistance development. In this review, we summarized the mode of action and susceptibility protocols of anti-Tubercular drugs. An effort to elucidate the role of genetic variations, cell membrane adaptions, and efflux pump modalities in treatment failure will be an asset in devising prospective strategies.

    Tuberculosis, Drug resistance, Mechanism of Action, Mutations
    (1) Shabana Gulzar Toor
    Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (2) Mohammad Faizan Asif
    Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (3) Hafsa Abbas
    Undergraduate Student, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (4) Gul Shehnaz
    Chairperson, Department of Pharmacy, Faculty of Biological Sciences, Quaid I Azam University, Islamabad, Pakistan.
  • Valim, A. R. Rossetti,M. L. Ribeiro, M. O. & Zaha, A. (2000).
  • Zaczek, A. Brzostek, E. Augustynowicz-Kopec, Z. Zwolska, & Dziadek, J. (2009).
  • Abraham, A. O., Nasiru, A. U., AbdulAzeez, A. K., Seun, O. O., & Ogonna, D. W. (2020). Mechanism of Drug Resistance in Mycobacterium Tuberculosis. American Journal of Biomedical Science & Research, 7(5), 378-383.
  • Ahmad, N., Ahuja, S. D., Akkerman, O. W., Alffenaar, J. C., Anderson, L. F., Baghaei, P., et al. (2018). Treatment correlates of successful outcomes in pulmonary multidrug- resistant Tuberculosis: an individual patient data meta-analysis. Lancet 392, 821-834. doi: 10.1016/S0140- 6736(18)31644-1.
  • Ai, J. W., Ruan, Q. L., Liu, Q. H., & Zhang, W. H. (2016). Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerging microbes & infections, 5(1), 1-8.
  • Akbergenov, R., Shcherbakov, D., Matt, T., Duscha, S., Meyer, M., Wilson, D. N., & Böttger, E. C. (2011). Molecular basis for the selectivity of antituberculosis compounds capreomycin and viomycin. Anti-microbial agents and chemotherapy, 55(10), 4712- 4717.
  • Alcalá, L., Ruiz-Serrano, M. J., Pérez-Fernández Turégano, C., García De Viedma, D., Díaz- Infantes, M., Marín-Arriaza, M., & Bouza, E. (2003). In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs. Antimicrobial agents and chemotherapy, 47(1), 416-417. https://doi.org/10.1128/aac.47.1.416- 417.2003
  • Almeida Da Silva, P. E., & Palomino, J. C. (2011). Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis:classical and new drugs. The Journal of anti-microbial chemotherapy, 66(7), 1417- 1430. https://doi.org/10.1093/jac/dkr173
  • Almeida, D., Ioerger, T., Tyagi, S., Li, S. Y., Mdluli, K., Andries, K., et al. (2016). Mutations in pepQ Confer Low-level resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 60, 4590-4599. doi: 10.1128/AAC.00753-16.
  • Alsaad, N., Wilffert, B., van Altena, R., de Lange, W. C., van der Werf, T. S., Kosterink, J. G., & Alffenaar, J. W. C. (2014). Potential anti- microbial agents for the treatment of multidrug-resistant Tuberculosis. European Respiratory Journal, 43(3), 884-897.
  • Amaral, L. E. O. N. A. R. D., & Lorian, V. I. C. T. O. R. (1991). Effects of chlorpromazine on the cell envelope proteins of Escherichia coli. Anti-microbial agents and chemotherapy, 35(9), 1923-1924.
  • Amaral, L., & Molnar, J. (2012). Potential therapy of multidrug-resistant and extremely drug- resistant Tuberculosis with thioridazine. in vivo, 26(2), 231-236.
  • Amaral, L., & Viveiros, M. (2012). Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. International journal of anti-microbial agents, 39(5), 376-380.
  • Amaral, L., Kristiansen, J. E., Abebe, L. S., & Millett, W. (1996). Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed Tuberculosis. Journal of Antimicrobial Chemotherapy, 38(6), 1049-1053.
  • Amaral, L., Kristiansen, J. E., Viveiros, M., & Atouguia, J. (2001). Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. Journal of Antimicrobial Chemotherapy, 47(5), 505-511.
  • Amaral, L., Viveiros, M., & Kristiansen, J. E. (2001). Phenothiazines: potential alternatives for the management of antibiotic resistant infections of Tuberculosis and malaria in developing countries. Tropical Medicine & International Health, 6(12), 1016-1022.
  • Amaral, l., viveiros, m., & molnar, j. (2004). Anti- microbial activity of phenothiazines. In vivo, 18(6), 725-732.
  • Ando, H., Miyoshi-Akiyama, T., Watanabe, S., & Kirikae, T. (2014). A silent mutation in mabA confers isoniazid resistance on M ycobacterium tuberculosis. Molecular microbiology, 91(3), 538-547.
  • Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W., Neefs, J. M., Winkler, H., et al. (2005). A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223-227. doi: 10.1126/science.1106753.
  • Andries, K., Villellas, C., Coeck, N., Thys, K., Gevers, T., Vranckx, L., et al. (2014). Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 9: e102135. doi: 10.1371/journal.pone.0102135.
  • Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W., Neefs, J. M., Winkler, H., & Williams, P. (2005). A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 307(5707), 223- 227.
  • Andriole, V. T. (2005). The quinolones: past, present, and future. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 41 Suppl 2, S113-S119. https://doi.org/10.1086/428051
  • Ang, C. W., Jarrad, A. M., Cooper, M. A., & Blaskovich, M. A. (2017). Nitroimidazoles: molecular fireworks that combat a broad spectrum of infectious diseases. Journal of Medicinal Chemistry, 60(18), 7636-7657.
  • Arbiser, J. L., & Moschella, S. L. (1995). Clofazimine: a review of its medical uses and mechanisms of action. Journal of the American Academy of Dermatology, 32(2), 241-247
  • Arora, S. K. (1981). Structural investigations of mode of action of drugs. III. Structure of rifamycin S iminomethyl ether. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 37(1), 152-157.
  • Aubry, A., Veziris, N., Cambau, E., Truffot-Pernot, C., Jarlier, V., & Fisher, L. M. (2006). Novel gyrase mutations in quinolone-resistant and-hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Anti-microbial Agents and Chemotherapy, 50(1), 104-112.
  • Aubry, A., Pan, X. S., Fisher, L. M., Jarlier, V., & Cambau, E. (2004). Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with anti- mycobacterial drug activity. Anti-microbial agents and chemotherapy, 48(4), 1281-1288. https://doi.org/10.1128/aac.48.4.1281- 1288.2004
  • Abraham, A. O. (2020). Mechanism of Drug Resistance in Mycobacterium Tuberculosis. - 7(5), AJBSR.MS.ID.001181. DOI:10.34297/AJBS R.2020.07.001181
  • Kim, B. J., Kim, S. Y., Park, B. H. et al., (1997).
  • Bakuła, Z., Napiórkowska, A., Bielecki, J., Augustynowicz-Kopeć, E., Zwolska, Z., & Jagielski, T. (2013). Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates from Poland. BioMed research international, 2013.
  • Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K. S., Wilson, T., ... & Jacobs, W. R. (1994). inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 263(5144), 227- 230.
  • Baulard, A. R., J. C. Betts, J. Engohang-Ndong, S. Quan, R. A. McAdam, P. J. Brennan, C. Locht, and G. S. Besra. (2000). Activation of the prodrug ethionamide is regulated in mycobacteria. J. Biol. Chem.275:28326- 28331.
  • Bernard, C., Veziris, N., Brossier, F., Sougakoff, W., Jarlier, V., Robert, J., & Aubry, A. (2015). Molecular diagnosis of fluoroquinolone resistance in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 59(3), 1519-1524.
  • Cuevas-Córdoba, B., Cuellar-Sánchez, A., Pasissi- Crivelli, A., Santana-Álvarez, C. A., Hernández-Illezcas, J., Zenteno-Cuevas, R., & rpsL. (2013), mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico, Journal of Microbiology, Immunology and Infection,Volume 46, Issue 1, Pages 30- 34,ISSN 1684-1182, https://doi.org/10.1016/j.jmii.2012.08.020.
  • Bloch, K. (1977). Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv. Enzymol. Relat. Areas Mol. Biol.45:1-84
  • Bloemberg, G. V., Keller, P. M., Stucki, D., Trauner, A., Borrell, S., Latshang, T., Coscolla, M., Rothe, T., Hömke, R., Ritter, C., Feldmann, J., Schulthess, B., Gagneux, S., & Böttger, E. C. (2015). Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis. The New England journal of medicine, 373(20), 1986-1988. https://doi.org/10.1056/NEJMc1505196
  • Boeree, M. J., Heinrich, N., Aarnoutse, R., Diacon, A. H., Dawson, R., Rehal, S., & Minja, L. T. (2017). High-dose rifampicin, moxifloxacin, and SQ109 for treating Tuberculosis: a multi-arm, multi-stage randomized controlled trial. The Lancet infectious diseases, 17(1), 39-49.
  • Bollela, V. R., Namburete, E. I., Feliciano, C. S., Macheque, D., Harrison, L. H., & Caminero, J. A. (2016). Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant Tuberculosis. The international journal of Tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 20(8), 1099-1104. https://doi.org/10.5588/ijtld.15.0864
  • Boni, I. V., Artamonova, V. S., & Dreyfus, M. (2000). The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control. Journal of bacteriology, 182(20), 5872-5879. https://doi.org/10.1128/jb.182.20.5872- 5879.2000
  • British Medical Association. (2010). Pharmaceutical Society of Great Britain: British National Formulary 59.
  • Brossier, F., Pham, A., Bernard, C., Aubry, A., Jarlier, V., Veziris, N., & Sougakoff, W. (2017). Molecular investigation of resistance to second-line injectable drugs in multidrug- resistant clinical isolates of Mycobacterium tuberculosis in France. Anti-microbial agents and chemotherapy, 61(2).
  • Brossier, F., Veziris, N., Truffot-Pernot, C., Jarlier, V., & Sougakoff, W. (2011). Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Anti- microbial agents and chemotherapy, 55(1), 355-360.
  • Brown, A. K. A., Bhatt, A., Singh, E., Saparia, A. F. E., & Besra. G. S., (2007). Identification of the dehydratase component of the mycobacterial mycolic acid-synthesizing fatty acid synthase-II complex. Microbiology153:4166-4173.
  • Campbell, J. W., & J. E. Cronan, J. (2001). Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol.55:305-332.
  • Campbell, P. J., Morlock, G. P., Sikes, R. D., Dalton, T. L., Metchock, B., Starks, A. M., ... & Posey, J. E. (2011). Molecular detection of mutations associated with first-and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Anti- microbial agents and chemotherapy, 55(5), 2032-2041.
  • Cars, O., Högberg, L. D., Murray, M., Nordberg, O., Sivaraman, S., Lundborg, C. S., ... & Tomson, G. (2008). Meeting the challenge of antibiotic resistance. Bmj, 337, a1438.
  • Caws, M., Duy, P. M., Tho, D. Q., Lan, N. T. N., & Farrar, J. (2006). Mutations prevalent among rifampin-and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. Journal of clinical microbiology, 44(7), 2333-2337.
  • Cellitti, S. E., Shaffer, J., Jones, D. H., Mukherjee, T., Gurumurthy, M., Bursulaya, B., ... & Cherian, J. (2012). Structure of Ddn, the deazaflavin-dependent nitroreductase rom Mycobacterium tuberculosis involved in bioreductive activation of PA- 824. Structure, 20(1), 101-112.
  • Centers for Disease Control and Prevention. (2006). Revised definition of extensively drug- resistant Tuberculosis. MMWR Morb Mortal Wkly Rep, 55(1176), 1.
  • Che, Y., Song, Q., Yang, T., Ping, G., & Yu, M. (2017). Fluoroquinolone resistance in multidrug- resistant Mycobacterium tuberculosis independent of fluoroquinolone use. The European respiratory journal, 50(6), 1701633. https://doi.org/10.1183/13993003.01633- 2017
  • Cheng, A. F., Yew, W. W., Chan, E. W., Chin, M. L., Hui, M. M., & Chan, R. C. (2004). Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Anti-microbial agents and chemotherapy, 48(2), 596— 601. https://doi.org/10.1128/aac.48.2.596- 601.2004
  • Cheng, S. J., Thibert, L., Sanchez, T., Heifets, L., & Zhang, Y. (2000). pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Anti-microbial agents and chemotherapy, 44(3), 528-532. https://doi.org/10.1128/aac.44.3.528- 532.2000
  • Crofton, j., & mitchison, d. A. (1948). Streptomycin resistance in pulmonary Tuberculosis. British medical journal, 2(4588), 1009-1015. https://doi.org/10.1136/bmj.2.4588.1009
  • Cynamon, M. H., Klemens, S. P., Sharpe, C. A., & Chase, S. (1999). Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Anti- microbial agents and chemotherapy, 43(5), 1189-1191. https://doi.org/10.1128/AAC.43.5.1189
  • De Knegt, G. J., van der Meijden, A., de Vogel, C. P., Aarnoutse, R. E., & de Steenwinkel, J. E. (2017). Activity of moxifloxacin and linezolid against Mycobacterium tuberculosis in combination with potentiator drugs verapamil, timcodar, colistin and SQ109. International journal of anti-microbial agents, 49(3), 302-307.
  • Deng, L., Mikusová, K., Robuck, K. G., Scherman, M., Brennan, P. J., & McNeil, M. R. (1995). Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Anti-microbial agents and chemotherapy, 39(3), 694-701. https://doi.org/10.1128/aac.39.3.694
  • Dookie, N., Rambaran, S., Padayatchi, N., Mahomed, S., & Naidoo, K. (2018). Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. The Journal of anti- microbial chemotherapy, 73(5), 1138-1151. https://doi.org/10.1093/jac/dkx506
  • Dutta, Noton & Karakousis, Petros. (2017). Mechanisms of Action and Resistance of the Anti-mycobacterial Agents. 10.1007/978-3-319-46718-4_25.
  • E. Cambau, V. Jarlier,Resistance to quinolones in mycobacteria, Research in Microbiology,Volume 147, Issues 1- 2,1996, Pages 52-59, ISSN 0923-2508, https://doi.org/10.1016/0923- 2508(96)80204-X. http://www.sciencedirect.com/science/ar ticle/pii/092325089680204X
  • Escribano, I., Rodríguez, J. C., Llorca, B., García- Pachon, E., Ruiz, M., & Royo, G. (2007). Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy, 53(6), 397-401. https://doi.org/10.1159/000109769
  • Ferber D. Biochemistry. Protein that mimics DNA helps tuberculosis bacteria resist antibiotics. Science. 2005 Jun 3;308(5727):1393. doi: 10.1126/science.308.5727.1393a. PMID: 15933168.
  • Finken, M., Kirschner, P., Meier, A., Wrede, A., & Böttger, E. C. (1993). Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Molecular microbiology, 9(6), 1239-1246. https://doi.org/10.1111/j.1365- 2958.1993.tb01253.x
  • Fulco, A. J., and K. Bloch. 1964. Cofactor requirements for the formation of delta-9- unsaturated fatty acids in Mycobacterium phlei. J. Biol. Chem.239:993-997.
  • Gandhi, N. R., Nunn, P., Dheda, K., Schaaf, H. S., Zignol, M., Van Soolingen, D., ... & Bayona, J. (2010). Multidrug-resistant and extensively drug-resistant Tuberculosis: a threat to global control of Tuberculosis. The Lancet, 375(9728), 1830-1843. Gandhi, N. R., Nunn, P., Dheda, K., Schaaf, H. S., Zignol, M., Van Soolingen, D., ... & Bayona, J. (2010). Multidrug-resistant and extensively drug- resistant Tuberculosis: a threat to global control of Tuberculos
  • Georghiou, S. B., Magana, M., Garfein, R. S., Catanzaro, D. G., Catanzaro, A., & Rodwell, T. C. (2012). Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PloS one, 7(3), e33275.
  • Ghajavand, H., Kargarpour Kamakoli, M., Khanipour, S., Pourazar Dizaji, S., Masoumi, M., Rahimi Jamnani, F., et al. (2019). High prevalence of bedaquiline resistance in treatment- naive tuberculosis patients and verapamil effectiveness. Antimicrob. Agents Chemother. 63: e02530-18. doi: 10.1128/AAC.02530-18
  • Ginsburg, A. S., Grosset, J. H., & Bishai, W. R. (2003). Fluoroquinolones, Tuberculosis, and resistance. The Lancet. Infectious diseases, 3(7), 432-442. https://doi.org/10.1016/s1473- 3099(03)00671-6
  • Goude, R., Amin, A. G., Chatterjee, D., & Parish, T. (2009). The arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 53(10), 4138-4146.
  • Gurumurthy, M., Rao, M., Mukherjee, T., Rao, S. P., Boshoff, H. I., Dick, T., ... & Manjunatha, U. H. (2013). A novel F420-dependent anti- oxidant mechanism protects M ycobacterium tuberculosis against oxidative stress and bactericidal agents. Molecular microbiology, 87(4), 744-755.
  • Hartkoorn, R. C., Uplekar, S., and Cole, S. T. (2014). Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58, 2979-2981. doi: 10.1128/AAC.00037-14
  • Haver, H. L., Chua, A., Ghode, P., Lakshminarayana, S. B., Singhal, A., Mathema, B., ... & Bifani, P. (2015). Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro- selected PA-824-resistant mutants of Mycobacterium tuberculosis. Anti- microbial agents and chemotherapy, 59(9), 5316-5323.
  • Hazbón, M. H., Brimacombe, M., Bobadilla del Valle, M., Cavatore, M., Guerrero, M. I., Varma- Basil, M., Billman-Jacobe, H., Lavender, C., Fyfe, J., García-García, L., León, C. I., Bose, M., Chaves, F., Murray, M., Eisenach, K. D., Sifuentes-Osornio, J., Cave, M. D., Ponce de León, A., & Alland, D. (2006). Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrobial agents and chemot https://doi.org/10.1128/AAC.00112-06
  • Hegde, S. S., Vetting, M. W., Roderick, S. L., Mitchenall, L. A., Maxwell, A., Takiff, H. E., & Blanchard, J. S. (2005). A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science, 308(5727), 1480-1483.
  • Hillemann, D., Rüsch-Gerdes, S., & Richter, E. (2008). In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Anti-microbial agents and chemotherapy, 52(2), 800-801. https://doi.org/10.1128/AAC.01189-07
  • Hotta K, Kondo S. Kanamycin and its derivative, arbekacin: significance and impact. J Antibiot (Tokyo). 2018 Mar;71(4):417- 424. doi: 10.1038/s41429-017-0017-8. Epub 2018 Feb 5. PMID: 29402999.
  • Howard P, Twycross R, Grove G, Charlesworth S, Mihalyo M, Wilcock A. Rifampin (INN Rifampicin). J Pain Symptom Manage. 2015 Dec;50(6):891-5.
  • Huitric, E., Verhasselt, P., Koul, A., Andries, K., Hoffner, S., and Andersson, D. I. (2010). Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob. Agents Chemother. 54, 1022-1028. doi: 10.1128/AAC.01611-09
  • oerger, T. R., Feng, Y., Chen, X., Dobos, K. M., Victor, T. C., Streicher, E. M., ... & Sacchettini, J. C. (2010). The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC genomics, 11(1), 670.
  • smail, N. A., Omar, S. V., Joseph, L., Govender, N., Blows, L., Ismail, F., et al. (2018). Defining Bedaquiline susceptibility, resistance, cross-resistance and associated genetic determinants: a retrospective cohort study. Ebiomedicine 28, 136-142. doi: 10.1016/j.ebiom.2018.01.005
  • Isolates. Antimicrob Agents Chemother, 2015
  • wainsky, H. (1988) Mode of action, biotransformation and pharmacokinetics of ant tuberculosis drugs in animals and man. In Antituberculosis Drugs. K. Bartmann (ed.). Berlin: Springer-Verlag, pp. 457- 465.
  • Jadaun, G. P. S., Das, R., Upadhyay, P., Chauhan, D. S., Sharma, V. D., & Katoch, V. M. (2009). Role of embCAB gene mutations in ethambutol resistance in Mycobacterium tuberculosis isolates from India. International journal of anti-microbial agents, 33(5), 483-486.
  • Jagielski, T., Bakuła, Z., Roeske, K., Kamiński, M., Napiórkowska, A., Augustynowicz-Kopeć, E., ... & Bielecki, J. (2014). Detection of mutations associated with isoniazid resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates. Journal of Antimicrobial Chemotherapy, 69(9), 2369-2375.
  • Jarlier, V., & Nikaido, H. (1994). Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS microbiology letters, 123(1-2), 11-18. https://doi.org/10.1111/j.1574- 6968.1994.tb07194.x
  • Jeong, I., Park, J. S., Cho, Y. J., Yoon, H. I., Song, J., Lee, C. T., & Lee, J. H. (2015). Drug- induced hepatotoxicity of anti-tuberculosis drugs and their serum levels. Journal of Korean medical science, 30(2), 167-172. https://doi.org/10.3346/jkms.2015.30.2.1 67
  • Jing, W., Zhang, T., Zong, Z., Xue, Y., Shang, Y., Wang, F., ... & Pang, Y. (2019). Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug- resistant Tuberculosis. European Journal of Clinical Microbiology & Infectious Diseases, 38(7), 1293-1296.
  • Johansen, S. K., Maus, C. E., Plikaytis, B. B., & Douthwaite, S. (2006). Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Molecular cell, 23(2), 173-182.
  • Johnsson, K., Froland, W. A., & Schultz, P. G. (1997). Overexpression, purification, and characterization of the catalase-peroxidase KatG from Mycobacterium tuberculosis. Journal of Biological Chemistry, 272(5), 2834-2840.
  • Jugheli, L., Bzekalava, N., de Rijk, P., Fissette, K., Portaels, F., & Rigouts, L. (2009). High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Anti- microbial agents and chemotherapy, 53(12), 5064-5068.
  • Kadura, S., King, N., Nakhoul, M., Zhu, H., Theron, G., Köser, C. U., & Farhat, M. (2020). Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. Journal of Antimicrobial Chemotherapy.
  • Kandler, J. L., Mercante, A. D., Dalton, T. L., Ezewudo, M. N., Cowan, L. S., Burns, S. P., Metchock, B., Global PETTS Investigators, Cegielski, P., & Posey, J. E. (2018). Validation of Novel Mycobacterium tuberculosis Isoniazid Resistance Mutations Not Detectable by Common Molecular Tests. Anti-microbial agents and chemotherapy, 62(10), e00974-18. https://doi.org/10.1128/AAC.00974-18
  • Kaniga, K., Cirillo, D. M., Hoffner, S., Ismail, N. A., Kaur, D., Lounis, N., et al. (2016). A multilaboratory, multicounty study to determine bedaquiline MIC quality control ranges for phenotypic drug susceptibility testing. J. Clin. Microbiol. 54, 2956-2962. doi: 10.1128/JCM.01123-16
  • Kashiwabara, Y., H. Nakagawa, G. Matsuki, and R. Sato. 1975. Effect of metal ions in the culture medium on the stearoyl-coenzyme A desaturase activity of Mycobacterium phlei. J. Biochem. (Tokyo)78:803-810
  • Kocagöz, T., Hackbarth, C. J., Unsal, I., Rosenberg, E. Y., Nikaido, H., & Chambers, H. F. (1996). Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Anti- microbial agents and chemotherapy, 40(8), 1768-1774. https://doi.org/10.1128/AAC.40.8.1768
  • Konno, K., Feldmann, F. M., & McDermott, W. (1967). Pyrazinamide susceptibility and amidase activity of tubercle bacilli. The American review of respiratory disease, 95(3), 461-469. https://doi.org/10.1164/arrd.1967.95.3.46 1
  • Kremer, L., A. R. Baulard, and G. S. Besra. 2000. Genetics of mycolic acid biosynthesis, p.173-190. In G. F. Hatfull and W. R. Jacobs, Jr. (ed.), Molecular genetics of mycobacteria. ASM Press, Washington, DC.
  • Kristiansen, J. E. (1993). Chlorpromazine: non- antibiotics with anti-microbial activity' new insights in managing resistance. Curr. Opin. Investig. Drugs, 2, 587-591
  • Kristiansen, J. E., & Amaral, L. (1997). The potential management of resistant infections with non-antibiotics. The Journal of anti- microbial chemotherapy, 40(3), 319-327
  • Lacoma, A., Garcia-Sierra, N., Prat, C., Maldonado, J., Ruiz-Manzano, J., Haba, L., ... & Dominguez, J. (2012). GenoType MTBDRsl for molecular detection of second-line- drug and ethambutol resistance in Mycobacterium tuberculosis strains and clinical samples. Journal of clinical microbiology, 50(1), 30-36.
  • Lamprecht, D. A., Finin, P. M., Rahman, M. A., Cumming, B. M., Russell, S. L., Jonnala, S. R., ... & Steyn, A. J. (2016). Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nature communications, 7(1), 1-14
  • Larsen, M. H., Vilchèze, C., Kremer, L., Besra, G. S., Parsons, L., Salfinger, M., Heifets, L., Hazbon, M. H., Alland, D., Sacchettini, J. C., & Jacobs, W. R., Jr (2002). Overexpression of inhA, but not kasA, confers resistance to soniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Molecular microbiology, 46(2), 453-466. https://doi.org/10.1046/j.1365- 2958.2002.03162.x
  • Lee, B. M., Harold, L. K., Almeida, D. V., Afriat-Jurnou, L., Aung, H. L., Forde, B. M., ... & Taylor, M. C. (2020). Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS pathogens, 16(2), e1008287.
  • Lee, N., & Nguyen, H. (2020). Ethambutol. StatPearls [Internet].
  • Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M., & Barry, C. E. (2003). Combinatorial lead optimization of [1, 2]- diamines based on ethambutol as potential antituberculosis preclinical candidates. Journal of combinatorial chemistry, 5(2), 172-187.
  • Lehmann, J. (1946) para-Aminosalicylic acid in the treatment of Tuberculosis. Lancet i: 15- 16
  • Lempens, P., Meehan, C. J., Vandelannoote, K., Fissette, K., de Rijk, P., Van Deun, A., ... & de Jong, B. C. (2018). Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Scientific reports, 8(1), 1-9.
  • Lentz, F., Reiling, N., Martins, A., Molnár, J., & Hilgeroth, A. (2018). Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis. Molecules (Basel, Switzerland), 23(4), 825. https://doi.org/10.3390/molecules23040 825
  • Lety, M. A., Nair, S., Berche, P., & Escuyer, V. (1997). A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis. Anti- microbial agents and chemotherapy, 41(12), 2629-2633.
  • Leung, E. T. Y., Ho, P. L., Yuen, K. Y., Woo, W. L., Lam, T. H., Kao, R. Y., ... & Yam, W. C. (2006). Molecular characterization of isoniazid resistance in Mycobacterium tuberculosis: identification of a novel mutation in inhA. Anti-microbial agents and chemotherapy, 50(3), 1075-1078.
  • Liu, Y., Gao, J., Du, J., Shu, W., Wang, L., Wang, Y., ... & Pang, Y. (2020). Acquisition of clofazimine resistance following bedaquiline treatment for multidrug- resistant Tuberculosis. International Journal of Infectious Diseases, 102, 392- 396.
  • Makarov, V., Lechartier, B., Zhang, M., Neres, J., van der Sar, A. M., Raadsen, S. A., ... & Widmer, N. (2014). Towards a new combination therapy for Tuberculosis with next generation benzothiazinones. EMBO molecular medicine, 6(3), 372-383.
  • Martinez, J. L., Fajardo, A., Garmendia, L., Hernandez, A., Linares, J. F., Martínez-Solano, L., & Sánchez, M. B. (2008). A global view of antibiotic resistance. FEMS microbiology reviews, 33(1), 44-65.
  • Maruri, F., Sterling, T. R., Kaiga, A. W., Blackman, A., van der Heijden, Y. F., Mayer, C., Cambau, E., & Aubry, A. (2012). A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. The Journal of anti- microbial chemotherapy, 67(4), 819-831. https://doi.org/10.1093/jac/dkr566
  • Massie, S. P. (1954). The Chemistry of Phenothiazine. Chemical Reviews, 54(5), 797-833.
  • Matrat, S., Veziris, N., Mayer, C., Jarlier, V., Truffot- Pernot, C., Camuset, J., Bouvet, E., Cambau, E., & Aubry, A. (2006). Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Anti-microbial agents and chemotherapy, 50(12), 4170-4173. https://doi.org/10.1128/AAC.00944-06
  • Matsumoto, M., Hashizume, H., Tomishige, T., Kawasaki, M., Tsubouchi, H., Sasaki, H., ... & Komatsu, M. (2006). OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against Tuberculosis in vitro and in mice. PLoS Med, 3(11), e466.
  • Maus, C. E., Plikaytis, B. B., & Shinnick, T. M. (2005). Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 49(8), 3192-3197.
  • Meng, Q., Luo, H., Liu, Y., Li, W., Zhang, W., & Yao, Q. (2009). Synthesis and evaluation of carbamate prodrugs of SQ109 as antituberculosis agents. Bioorganic & medicinal chemistry letters, 19(10), 2808- 2810.
  • Mitchison D. A. (1985). The action of antituberculosis drugs in short-course chemotherapy. Tubercle, 66(3), 219-225. https://doi.org/10.1016/0041- 3879(85)90040-6
  • Moazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389- 394. https://doi.org/10.1038/327389a0
  • Mohamed, A. E., Condic-Jurkic, K., Ahmed, F. H., Yuan, P., O'Mara, M. L., Jackson, C. J., & Coote, M. L. (2016). Hydrophobic shielding drives catalysis of hydride transfer in a family of F420H2-dependent enzymes. Biochemistry, 55(49), 6908- 6918.
  • Molnar, J., Beladi, I., & Földes, I. (1977). Studies on antituberculotic action of some phenothiazine derivatives in vitro. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie, 239(4), 521-526.
  • Morens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and re- emerging infectious diseases. Nature, 430(6996), 242-249.
  • Morlock, G. P., Metchock, B., Sikes, D., Crawford, J. T., & Cooksey, R. C. (2003). ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Anti-microbial agents and chemotherapy, 47(12), 3799-3805.
  • Mukherjee, T., & Boshoff, H. (2011). Nitroimidazoles for the treatment of TB: past, present and future. Future medicinal chemistry, 3(11), 1427-1454.
  • Neu, H. C. (1994). Antimicrobial Chemotherapy, 1934-1994. Antimicrobics and Infectious Diseases Newsletter, 13(1), 1-8.
  • Njire M Tan Y, Mugweru J, Wang C, Guo J, Yew W, et al. (2016) Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Adv Med Sci 61(1): 63-71.
  • Nuermberger, E., Tyagi, S., Tasneen, R., Williams, K. N., Almeida, D., Rosenthal, I., & Grosset, J. H. (2008). Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of Tuberculosis. Anti- microbial agents and chemotherapy, 52(4), 1522-1524. https://doi.org/10.1128/AAC.00074-08
  • Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., Suzuki, Y., & Ochi, K. (2007). Loss of a conserved 7- methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Molecular microbiology, 63(4), 1096-1106. https://doi.org/10.1111/j.1365- 2958.2006.05585.x
  • Onajole, O. K., Govender, P., van Helden, P. D., Kruger, H. G., Maguire, G. E., Wiid, I., & Govender, T. (2010). Synthesis and evaluation of SQ109 analogues as potential anti-tuberculosis candidates. European journal of medicinal chemistry, 45(5), 2075-2079.
  • Ordway, D., Viveiros, M., Leandro, C., Bettencourt, R., Almeida, J., Martins, M., ... & Amaral, L. (2003). Clinical concentrations of thioridazine kill intracellular multidrug- resistant Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 47(3), 917-922.
  • Organization, W. H. Global tuberculosis report 2018. (World Health Organization, 2018).
  • Palomino, J. C., & Martin, A. (2014). Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel, Switzerland), 3(3), 317-340. https://doi.org/10.3390/antibiotics30303 17
  • Pandey, B., Grover, S., Kaur, J., & Grover, A. (2019). Analysis of mutations leading to para- aminosalicylic acid resistance in Mycobacterium tuberculosis. Scientific reports, 9(1), 1-15.
  • Pym, A. S., Saint-Joanis, B., & Cole, S. T. (2002). Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infection and immunity, 70(9), 4955-4960. https://doi.org/10.1128/iai.70.9.4955- 4960.2002
  • Quenard, F., Fournier, P. E., Drancourt, M., & Brouqui, P. (2017). Role of second-line injectable antituberculosis drugs in the treatment of MDR/XDR tuberculosis. International Journal of Antimicrobial Agents, 50(2), 252-254
  • Raghunandanan, S., Jose, L., & Kumar, R. A. (2018). Dormant Mycobacterium tuberculosis converts isoniazid to the active drug in a Wayne's model of dormancy. The Journal of antibiotics, 71(11), 939'949.
  • Ramaswamy, S. V., Amin, A. G., Göksel, S., Stager, C. E., Dou, S. J., El Sahly, H., ... & Musser, J. M. (2000). Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates ofMycobacterium Tuberculosis. Anti- microbial agents and chemotherapy, 44(2), 326-336.
  • Rawat, R., Whitty, A., & Tonge, P. J. (2003). The isoniazid-NAD adduct is a slow, tight- binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13881-13886. https://doi.org/10.1073/pnas.223584810 0
  • Reeves, A. Z., Campbell, P. J., Sultana, R., Malik, S., Murray, M., Plikaytis, B. B., Shinnick, T. M., & Posey, J. E. (2013). Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5' untranslated region of whiB7. Anti- microbial agents and chemotherapy, 57(4), 1857-1865. https://doi.org/10.1128/AAC.02191-12
  • Rivière, E., Whitfield, M. G., Nelen, J., Heupink, T. H., & Van Rie, A. (2020). Identifying isoniazid resistance markers to guide inclusion of high-dose isoniazid in tuberculosis treatment regimens: a systematic review. Clinical Microbiology and Infection.
  • Ruusala, T., & Kurland, C. G. (1984). Streptomycin preferentially perturbs ribosomal proofreading. Molecular and General Genetics MGG, 198(1), 100-104.
  • Foongladda, S., Roengsanthia, D., Arjrattanakool, W., Chuchottaworn, C., Chaiprasert, A., & Franzblau, S. G. (2002). Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Disease, 6(12), 1118-1122.
  • Safi, H., Lingaraju, S., Amin, A., Kim, S., Jones, M., Holmes, M., McNeil, M., Peterson, S. N., Chatterjee, D., Fleischmann, R., & Alland, D. (2013). Evolution of high-level ethambutol-resistant Tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nature genetics, 45(10), 1190-1197. https://doi.org/10.1038/ng.2743
  • Samuelson, J. (1999). Why metronidazole is active against both bacteria and parasites. Anti- microbial agents and chemotherapy, 43(7), 1533-1541.
  • Scorpio, A., & Zhang, Y. (1996). Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nature medicine, 2(6), 662-667. https://doi.org/10.1038/nm0696-662
  • Scorpio, A., Lindholm-Levy, P., Heifets, L., Gilman, R., Siddiqi, S., Cynamon, M., & Zhang, Y. (1997). Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 41(3), 540-543. https://doi.org/10.1128/AAC.41.3.540
  • Sebastian M. Gygli, Sonia Borrell, Andrej Trauner, Sebastien Gagneux, Anti-microbial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives, FEMS Microbiology Reviews, Volume 41, Issue 3, May 2017, Pages 354- 373, https://doi.org/10.1093/femsre/fux01 1
  • Seifert, M., Catanzaro, D., Catanzaro, A., & Rodwell, T. C. (2015). Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PloS one, 10(3), e0119628. https://doi.org/10.1371/journal.pone.0119 628
  • Sherman, D. R., Mdluli, K., Hickey, M. J., Arain, T. M., Morris, S. L., Barry, C. E., & Stover, C. K (1996). Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science, 272(5268), 1641- 1643.
  • Shi, W., Zhang, X., Jiang, X., Yuan, H., Lee, J. S., Barry, C. E., 3rd, Wang, H., Zhang, W., & Zhang, Y. (2011). Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science (New York, N.Y.), 333(6049), 1630-1632. https://doi.org/10.1126/science.1208813
  • Silva, M. S. N., Senna, S. G., Ribeiro, M. O., Valim, A. R., Telles, M. A., Kritski, A., ... & Rossetti, M. L. R. (2003). Mutations in katG, inhA, and ahpC genes of Brazilian isoniazid- resistant isolates of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 41(9), 4471-4474.
  • Singh, R., Manjunatha, U., Boshoff, H. I., Ha, Y. H., Niyomrattanakit, P., Ledwidge, R., ... & Kang, S. (2008). PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science, 322(5906), 1392-1395.
  • Smith, T., Wolff, K. A., & Nguyen, L. (2013). Molecular biology of drug resistance in Mycobacterium tuberculosis. Current topics in microbiology and immunology, 374, 53-80. https://doi.org/10.1007/82_2012_279
  • Sotgiu, G., Centis, R., D'ambrosio, L., & Migliori, G. B. (2015). Tuberculosis treatment and drug regimens. Cold Spring Harbor perspectives in medicine, 5(5), a017822.
  • Spies, F. S., da Silva, P. E., Ribeiro, M. O., Rossetti, M. L., & Zaha, A. (2008). Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Anti- microbial agents and chemotherapy, 52(8), 2947-2949. https://doi.org/10.1128/AAC.01570-07
  • Sreevatsan, S., Stockbauer, K. E., Pan, X. I., Kreiswirth, B. N., Moghazeh, S. L., Jacobs, W. R., ... & Musser, J. M. (1997). Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Anti-microbial agents and chemotherapy, 41(8), 1677-1681
  • Stanley, R. E., Blaha, G., Grodzicki, R. L., Strickler, M. D., & Steitz, T. A. (2010). The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nature structural & molecular biology, 17(3), 289.
  • Starks, A. M., Gumusboga, A., Plikaytis, B. B., Shinnick, T. M., & Posey, J. E. (2009). Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 53(3), 1061-1066.
  • Sun, G., Luo, T., Yang, C., Dong, X., Li, J., Zhu, Y., ... & Mei, J. (2012). Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. The Journal of infectious diseases, 206(11), 1724-1733.
  • Sun, Z., Zhang, J., Zhang, X., Wang, S., Zhang, Y., & Li, C. (2008). Comparison of gyrA gene mutations between laboratory-selected ofloxacin-resistant Mycobacterium tuberculosis strains and clinical isolates. International journal of anti- microbial agents, 31(2), 115-121. https://doi.org/10.1016/j.ijantimicag.2007. 10.014
  • Takayama, K., & Kilburn, J. O. (1989). Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Anti-microbial agents and chemotherapy, 33(9), 1493-1499. https://doi.org/10.1128/aac.33.9.1493
  • Takiff, H. E., Cimino, M., Musso, M. C., Weisbrod, T., Martinez, R., Delgado, M. B., ... & Jacobs, W. R. (1996). Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proceedings of the National Academy of Sciences, 93(1), 362-366.
  • Takiff, H. E., Salazar, L., Guerrero, C., Philipp, W., Huang, W. M., Kreiswirth, B., Cole, S. T., Jacobs, W. R., Jr, & Telenti, A. (1994). Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Anti-microbial agents and chemotherapy, 38(4), 773- 780. https://doi.org/10.1128/aac.38.4.773
  • Te Brake, L. H., Russel, F. G., van den Heuvel, J. J., de Knegt, G. J., de Steenwinkel, J. E., Burger, D. M., ... & Koenderink, J. B. (2016). Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis, 96, 150-157.
  • Telenti, A., Imboden, P., Marchesi, F., Matter, L., Schopfer, K., Bodmer, T., ... & Cole, S. (1993). Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. The Lancet, 341(8846), 647- 651.
  • Telenti, A., Philipp, W. J., Sreevatsan, S., Bernasconi, C., Stockbauer, K. E., Wieles, B., ... & Jacobs, W. R. (1997). The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nature medicine, 3(5), 567- 570.
  • Tetali, S. R., Kunapaeddi, E., Mailavaram, R. P., Singh, V., Borah, P., Deb, P. K., ... & Tekade, R. K. (2020). Current advances in the clinical development of anti-tubercular agents. Tuberculosis, 125, 101989.
  • Thomas, J. P., Baughn, C. O., Wilkinson, R. G., & Shepherd, R. G. (1961). A new synthetic compound with antituberculous activity in mice: Ethambutol (dextro-2, 2′- (ethylenediimino)-di-1-butanol). American Review of Respiratory Disease, 83(6), 891- 893.
  • Tseng, S. T., Tai, C. H., Li, C. R., Lin, C. F., & Shi, Z. Y. (2015). The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. Journal of Microbiology, Immunology and Infection, 48(3), 249- 255.
  • Tsukamura, M. (1969). Cross-resistance relationships between capreomycin, kanamycin, and viomycin resistances in tubercle bacilli from patients. American Review of Respiratory Disease, 99(5), 780- 782.
  • Tuberculosis. John S. Blanchard, Annual Review of Biochemistry, 2003.
  • Umumararungu, T., Mukazayire, M. J., Mpenda, M., Mukanyangezi, M. F., Nkuranga, J. B., Mukiza, J., & Olawode, E. O. (2020). A review of recent advances in anti-tubercular drug development. Indian Journal of Tuberculosis.
  • Vale, N., Gomes, P., & A Santos, H. (2013). Metabolism of the antituberculosis drug ethionamide. Current drug metabolism, 14(1), 151-158.
  • Van Doorn, H. R., de Haas, P. E., Kremer, K., Vandenbroucke-Grauls, C. M., Borgdorff, M. W., & van Soolingen, D. (2006). Public health impact of isoniazid-resistant Mycobacterium tuberculosis strains with a mutation at aminoacid position 315 of katG: a decade of experience in The Netherlands. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 12(8), 769-775. https://doi.org/10.1111/j.1469- 0691.2006.01495.x
  • Van Dorp, L., Nimmo, C., Ortiz, A. T., Pang, J., Acman, M., Tan, C. C., ... & Pym, A. (2020). Detection of a bedaquiline/clofazimine resistance reservoir in Mycobacterium tuberculosis predating the antibiotic era. bioRxiv.
  • Verma, J. S., Gupta, Y., Nair, D., Manzoor, N., Rautela, R. S., Rai, A., & Katoch, V. M. (2014). Evaluation of gidB alterations responsible for streptomycin resistance in Mycobacterium tuberculosis. The Journal of anti-microbial chemotherapy, 69(11), 2935-2941. https://doi.org/10.1093/jac/dku273
  • Vilcheze, C., Weisbrod, T. R., Chen, B., Kremer, L., Hazbón, M. H., Wang, F., ... & Jacobs, W. R. (2005). Altered NADH/NAD ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Anti- microbial agents and chemotherapy, 49(2), 708-720.
  • Vilchèze, C., & Jacobs, W. R., Jr (2007). The Mechanism of isoniazid killing: clarity through the scope of genetics. Annual review of microbiology, 61, 35-50. https://doi.org/10.1146/annurev.micro.61.1 11606.122346
  • Vilchèze, C., Wang, F., Arai, M., Hazbón, M. H., Colangeli, R., Kremer, L., ... & Jacobs, W. R. (2006). Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nature medicine, 12(9), 1027-1029.
  • Vilchèze, C., H. R. Morbidoni, T. R. Weisbrod, H. Iwamoto, M. Kuo, J. C. Sacchettini, and W. R. Jacobs, Jr. 2000. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol.182:4059-4067.
  • Villellas, C., Coeck, N., Meehan, C. J., Lounis, N., de Jong, B., Rigouts, L., et al. (2017). Unexpected high prevalence of resistance- associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J. Antimicrob. Chemother. 72, 684-690. doi: 10.1093/jac/dkw502
  • Viveiros, M., & Amaral, L. (2001). Enhancement of antibiotic activity against poly-drug resistant Mycobacterium tuberculosis by phenothiazines. International journal of anti-microbial agents, 17(3), 225-228
  • Wang, F., Jain, P., Gulten, G., Liu, Z., Feng, Y., Ganesula, K., ... & Jacobs, W. R. (2010). Mycobacterium tuberculosis dihydrofolate reductase is not a target relevant to the anti-tubercular activity of isoniazid. Anti- microbial agents and chemotherapy, 54(9), 3776-3782.
  • Willand, N. et al. Synthetic EthR inhibitors boost ant tuberculous activity of ethionamide. Nat Med 15, 537-544 (2009).
  • Winder, FG (1982) Mode of action of the anti- mycobacterial agents and associated aspects of the molecular biology of mycobacteria. In The Biology of Mycobacteria - Vol I. Ratledge, C, and Stanford. J. (eds). London; Academic
  • Wolucka, B. A., McNeil, M. R., de Hoffmann, E., Chojnacki, T., & Brennan, P. J. (1994). Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. The Journal of biological chemistry, 269(37), 23328-23335.
  • World Health Organization [WHO] (2019a). Global Tuberculosis Report.
  • World Health Organization. (2009). WHO report 2009-global tuberculosis control epidemiology, strategy, financing. World Health Organization.
  • Wright, A., & Zignol, M. (2008). Anti-tuberculosis drug resistance in the world: fourth global report: the world health organization/international union against Tuberculosis and lung disease (who/union) global project on anti-tuberculosis drug resistance surveillance, 2002-2007. World Health Organization.
  • Xu, J., Tozawa, Y., Lai, C., Hayashi, H., & Ochi, K. (2002). A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3 (2). Molecular Genetics and Genomics, 268(2), 179-189.
  • Xu, J., Wang, B., Hu, M., Huo, F., Guo, S., Jing, W., ... & Lu, Y. (2017). Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant Tuberculosis. Anti-microbial agents and chemotherapy, 61(6).
  • Yamada, T. A. K. E. S. H. I., Nagata, A. K. I. H. I. S. A., Ono, Y. A. S. U. K. O., Suzuki, Y. A. S. U. H. I. K. O., & Yamanouchi, T. (1985). Alteration of ribosomes and RNA polymerase in drug-resistant clinical isolates of Mycobacterium tuberculosis. Anti-microbial agents and chemotherapy, 27(6), 921-924.
  • Ye, C., Williams, B.G., Espinal, M.A., and Raviglione, M.C. (2002) Erasing the world's slow stain: strategies to beat multidrug-resistant Tuberculosis. Science 295: 2042 - 2046.
  • Yew, W. W., Liang, D., Chan, D. P., Shi, W., & Zhang, Y. (2017). Molecular mechanisms of clofazimine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 72(10), 2943-2944.
  • Yu, J., Wu, J., Francis, K. P., Purchio, T. F., & Kadurugamuwa, J. L. (2005). Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. Journal of Antimicrobial Chemotherapy, 55(4), 528- 534.
  • Zaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M., & Posey, J. E. (2009). Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences, 106(47), 20004-20009.
  • Zhang Y. (2005). The magic bullets and tuberculosis drug targets. Annual review of pharmacology and toxicology, 45, 529-564. https://doi.org/10.1146/annurev.pharmtox. 45.120403.100120
  • Zhang, S., Chen, J., Cui, P., Shi, W., Zhang, W., & Zhang, Y. (2015). Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 70(9), 2507-2510.
  • Zhang, Y., & Yew, W. W. (2009). Mechanisms of drug resistance in Mycobacterium tuberculosis. The international journal of Tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 13(11), 1320-1330.
  • Zhang, Y., Heym, B., Allen, B., Young, D., & Cole, S. (1992). The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 358(6387), 591- 593. https://doi.org/10.1038/358591a0
  • Zhang, Y., Wade, M. M., Scorpio, A., Zhang, H., & Sun, Z. (2003). Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. The Journal of anti-microbial chemotherapy, 52(5), 790-795. https://doi.org/10.1093/jac/dkg446
  • Zhu, C., Liu, Y., Hu, L., Yang, M., & He, Z. G. (2018). Molecular Mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. Journal of Biological Chemistry, 293(43), 16741- 16750.
  • Zimhony, O., Cox, J. S., Welch, J. T., Vilchèze, C., & Jacobs, W. R., Jr (2000). Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature medicine, 6(9), 1043 - 1047. https://doi.org/10.1038/79558
  • imhony, O., Vilchèze, C., Arai, M., Welch, J. T., & Jacobs, W. R., Jr (2007). Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Anti-microbial agents and chemotherapy, 51(2), 752-754. https://doi.org/10.1128/AAC.01369-06
  • Zumla, A., George, A., Sharma, V., Herbert, R. H. N., Oxley, A., & Oliver, M. (2015). The WHO 2014 global tuberculosis report-further to go. The Lancet Global Health, 3(1), e10- e12.

Cite this article

    APA : Toor, S. G., Asif, M. F., & Abbas, H. (2017). Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis. Global Immunological & Infectious Diseases Review, II(I), 9-27. https://doi.org/10.31703/giidr.2017(II-I).02
    CHICAGO : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. 2017. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review, II (I): 9-27 doi: 10.31703/giidr.2017(II-I).02
    HARVARD : TOOR, S. G., ASIF, M. F. & ABBAS, H. 2017. Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis. Global Immunological & Infectious Diseases Review, II, 9-27.
    MHRA : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. 2017. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review, II: 9-27
    MLA : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review, II.I (2017): 9-27 Print.
    OXFORD : Toor, Shabana Gulzar, Asif, Mohammad Faizan, and Abbas, Hafsa (2017), "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis", Global Immunological & Infectious Diseases Review, II (I), 9-27
    TURABIAN : Toor, Shabana Gulzar, Mohammad Faizan Asif, and Hafsa Abbas. "Declined Drug Susceptibility Mechanisms against Mycobacterium Tuberculosis." Global Immunological & Infectious Diseases Review II, no. I (2017): 9-27. https://doi.org/10.31703/giidr.2017(II-I).02